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Abstract

This short contribution has for main purpose to exhibit the essentials of non-linear wave properties in mechanical

systems of engineering origin (structural members). Non-linear resonance is examined on two one-dimensional ex-

amples, an infinite straight elastic bar and a thin elastic circular ring, exhibiting continuous and discrete spectra, re-

spectively. Three-wave and four-wave interactions and the stability of coupled modes with respect perturbations are

discussed, the emphasis being placed on mechanical phenomena (e.g., stress amplification), although analogies with

some non-linear optical systems are obvious.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The phenomenon of non-linear resonance coupling classically occurs in physical systems that are gov-

erned by distinct modes of propagation; these may be of the same physical nature––e.g., various mechanical

modes-, or they may be of totally differing natures––say, mechanical and magnetic or electric––as is often

the case. In any case the two basic ingredients needed are (i) the existence of multimodes in the physical
system and (ii) the dispersion of these modes in the linearized case. Such physical situations have received

the attention of applied mathematicians and wave specialists in various fields of physics and engineering

science, e.g., in non-linear optics and radiophysics (cf. Sukhorukov, 1988; Nelson, 1979), in fluid dynamics

(cf. Craig, 1985), and in elastic crystals with a microstructure (cf. Maugin, 1999; Potapov et al., 1998). In the

case of elastic crystals the multimodes are due to a coupling of classical elastic degrees of freedom with the

kinematics of an internal structure––a rigid mechanical one such as in micropolar media and liquid crystals,

a magnetic one such as in ferromagnets (coupling between phonons and magnons), and an electric one in

ferroelectric bodies (electroelastic couplings).
In the present work, we focus attention on the non-linear wave couplings in engineering elastic structures.

More particularly in this part on one-dimensional examples, one such structure is an elastic infinitely long
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straight bar and the other is a thin closed circular ring. These two structures are chosen because they exhibit

a continuous spectrum and a discrete one (due to the circular periodicity), respectively. They have,

therefore, the value of paradigms. They are perfect examples of non-linear oscillatory systems exhibiting

a hierarchy of wave instabilities. The mathematical tools used are those of non-linear science, essen-
tially asymptotics. The related algebra often is cumbersome and will, therefore, be omitted most of the

time. It can be found in lengthy original reports. We emphasize here the mechanical consequences of the

analysis.

2. Non-linear waves in a thin infinitely long bar

In a non-dimensional notation the relevant basic field equations are the following ones (Kauderer,
1958):

utt � uxx ¼
l
2
oxw2

x ;

wtt þ a2wxxxx ¼ loxðuxwxÞ þ
l2

2
oxw3

x ;

ð2:1Þ

where u is the longitudinal displacement of the middle line of the bar, w is the transverse displacement, a is

the non-dimensional radius of inertia of the bar, and l is a coupling parameter supposed to be sufficiently

small to justify the validity of asymptotic considerations. Eq. (2.1) are established under the working hy-

potheses of Bernoulli and Euler. Only second-order couplings between the longitudinal mode u and the
bending mode w are kept at most. The linear analysis of Eq. (2.1) yields straightforwardly the modes as non-

dispersive direct and counter propagating longitudinal waves of frequency

xl ¼ �k ð2:2Þ
and highly dispersive bending waves of frequency

xb ¼ �ak2: ð2:3Þ
The spectra are sketched in Fig. 1.

Now we consider the possible coupling between three waves selected at working points 1, 2 and 3 in this
figure in a typical parallelogram form such that we satisfy the so-called three-wave phase matching

x3 ¼ x1 þ x2; k3 ¼ k1 � k2; x3 P x2 P x1: ð2:4Þ

Fig. 1. Spectrum and three-wave resonance for a thin infinitely long bar.
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That is, we consider the problem of modal energy exchange between a large-amplitude high-frequency

longitudinal wave (point 3) coupled to two low-frequency bending waves (points 2 and 1) propagating in

opposite directions. The three frequencies thus selected are said to form a resonant triad, or in a more

music-like Pithagorean fashion, a resonant trio. The non-linear resonant coupling between these modes is
now examined on the basis of the Eq. (2.1) at order one in the small coupling parameter l. Coupled so-

lutions are sought in the form

uðx; tÞ ¼ A3ðv; sÞexpiU3 þ luð1Þðx; tÞ þ ð��Þ�;
wðx; tÞ ¼ A1ðv; sÞexpiU1 þ A2ðv; sÞexpiU2 þ lwð1Þðx; tÞ þ ð��Þ�;

ð2:5Þ

where v ¼ lx, s ¼ lt, l 	 1, the An are slowly varying amplitudes of the parts of (2.5) that are solutions

satisfying the linear field equations (they are thus determined by initial and boundary conditions), and the

phases Un are such that

Un ¼ xnt � knx; ð2:6Þ
with each couple ðxn; knÞ satisfying the correspondingly numbered dispersion relation and altogether the

phase matching conditions. The symbolism ð��Þ� denotes complex conjugacy. On substituting from (2.5)

into Eq. (2.1) and averaging the resulting equations over the phases Un, we obtain a system of three coupled

hyperbolic partial differential equations for the amplitudes An:

oAn

os
þ vn

oAn

ov
¼ b

xn

oU
oA�

n

; ð2:7Þ

where

vn ¼ dxnðknÞ=dk; ð2:8Þ

b ¼ �k1k2k3=2 ð2:9Þ
and

U ¼ A1A2A�
3 þ A�

1A
�
2A3 ð2:10Þ

are, respectively, the group velocities of the ‘‘linear’’ modes, a coefficient of non-linearity, and what may be

called a cubic average potential. The Cauchy problem associated with (2.7) requires the knowledge of the

initial conditions Anðv; 0Þ ¼ anðvÞ, n ¼ 1; 2; 3.
On setting

En ¼ x2
njAnj2; Sn ¼ vnEn ð2:11Þ

the energy and energy flux associated with each linear mode, we can establish several consequences of Eqs.

(2.7) and (2.8) such as the equation

o

os
ðE1 þ E2 þ E3Þ þ

o

ov
ðS1 þ S2 þ S3Þ ¼ 0; ð2:12Þ

clearly a law of conservation of energy between the three modes, and equations of the type

o

os
E1

x1

�
� E2

x2

�
þ o

ov
S1

x1

�
� S2

x2

�
¼ 0 ð2:13Þ

and similar ones by permutation. Eqs. (2.12) and (2.13) are canonical (as such, they are formally identical to

those obtained for three-wave mixing in non-linear optics; cf. Nelson, 1979). Direct consequences of these
are the well known Manley-Rowe relations (first integrals of Eq. (2.12) and (2.13) that characterize the

energy partition between modes), see Kovriguine and Potapov (1996):
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E ¼ E1 þ E2 þ E3 ¼ const:; ð2:14Þ

E1

x1

� E2

x2

¼ C1;
E2

x2

þ E3

x3

¼ C2;
E1

x1

þ E3

x3

¼ C3; ð2:15Þ

where the Cn are constants.

Remark. For spatially uniform processes (o=ov ! 0), Eq. (2.7) yield the reduced equations

dA1

ds
¼ b

x1

A3A�
2;

dA2

ds
¼ b

x2

A�
1A3;

dA3

ds
¼ b

x3

A1A2: ð2:16Þ

These are identical to the Euler equations of motion for a rigid body about a fixed point (for real-valued

variables, obviously; (cf. Landau and Lifshitz, 1976)).

At the degree of approximation (cf. Eq. (2.5)) of the present approach, we have the following easily

established results concerning the stability of modes:

ii(i) Longitudinal waves are unstable with respect to small low-frequency perturbations (so-called break-up

instability),

i(ii) Bending waves are stable––(at least) within the present first-order non-linear approximation––with re-

spect to small high-frequency perturbations.

(iii) The loss of stability against the high-frequency wave can lead to a dynamic stress growth caused by the

resonant excitation of two low-frequency waves. As a consequence, one must pay special attention to

the initial stress level, e.g., one may envisage a restriction on it so as to stay in the elastic regime.

Finally, one may inquire about the temporal evolution of the considered triad. This requires exploiting a

technique such as the inverse scattering method (ISM; cf. Kovriguine et al., 2001) to find out analytical

expressions (in terms of Jacobian elliptic functions). Fig. 2 gives such an evolution for amplitudes of rel-

atively close sizes. One may also remark that the physical system considered may exhibit triple-wave

envelope solitons––the three amplitudes travel then together as a ‘‘complex of solitonic shapes’’––in which

case (illustrated in Fig. 3) modes 1 and 2 are ‘‘bright’’ solitons and mode 3 is a ‘‘dark’’ one (in the optical

Fig. 2. Evolution of squared amplitudes for the triad of Fig. 1.
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jargon) so that energy is conserved. In this case, the amplitudes being fixed once and for all, there is no

energy exchange while the triad travels inertially at constant speed (cf. Fig. 3).

2.1. The problem of four-wave resonant interactions

We now briefly investigate the influence of higher-order couplings––those of order l2––on the stable

(bending) waves. This also allows one to consider four-wave interactions––something much less studied

than three-wave ones (cf. Craig, 1985, in fluid mechanics), to confirm the generation of non-linear sta-

tionary waves due to self-modulation, and to examine the evolution for finite-amplitude bending waves.

Extending somewhat the ansatz (2.5), we now seek solutions in the form

uðx; tÞ ¼ Aðv; sÞ þ luð1Þðx; tÞ þ l2uð2Þðx; tÞ þ Oðl3tÞ þ ð��Þ�;

wðx; tÞ ¼
X4

n¼1

Bnðv; sÞexpiUn þ lwð1Þðx; tÞ þ l2wð2Þðx; tÞ þ Oðl3tÞ þ ð��Þ�;
ð2:17Þ

where Aðv; tÞ is a nearly uniform non-oscillatory perturbation, Bnðv; tÞ are slowly varying amplitudes, the

phases Un are such as in (2.6) with xn and kn satisfying the linear dispersion relations, and uðmÞ and wðmÞ are

finite resonant corrections.

On substituting from (2.17) in (2.1) at the first order in l, we obtain the following system for uð1Þ and the
Bn�s:

ðos þ vnovÞBnðv; sÞ ¼ 0; ð2:18Þ

uð1Þtt � uð1Þxx ¼
X4

n;m¼1

iknkm
2

½kn�mBnB�
mexpiUn�m � knþmBnBmexpiUnþm
 þ ð��Þ�; ð2:19Þ

where we have set

vn ¼ dxn=dk; kn�m ¼ kn � km; Un�m ¼ Un � Um: ð2:20Þ

Fig. 3. Soliton-like solution without energy exchange for the triad of Fig. 1.
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Eq. (2.18) represents a first-order wave equation for each Bn. Eq. (2.19) is far too complicated in this

general state. It however shows that the longitudinal component uð1Þ is driven by quasi-harmonic bending

waves so that uð1Þx will involve combinational harmonics. In order to provide a more specific illustration,

consider the case where the xn and kn satisfy the following phase-matching conditions:

x1 ¼ x2 þ x3 þ x4 þ l2Dx; k1 ¼ k2 � k3 � k4; ð2:21Þ

where the so-called frequency detuning Dx is of the order of maxxn. Such a situation is illustrated in Fig. 4.
We say that the four working points on this dispersion diagram provide a resonant quartet (there are other

possibilities providing other quartets (cf. Kovriguine et al., 2001)). It is then of interest to look at the next

order of approximation ðl2Þ for the solution of the system (2.1). This now provides a system of equations

that govern the Bn�s and the amplitude A of the longitudinal mode. This system reads thus

os

�
þ vnov þ

ilv0n
2

�
Bn ¼

il
2xn

c0

oU
oB�

n

"
þ
X4

n¼1

BnðcnmjBmj2 þ k2
nAvÞ

#
;

Ass � Avv ¼
X4

n¼1

k2
novjBnj2;

ð2:22Þ

where c0 is a non-linearity coefficient, the coefficients cnm depend on kn, km, vn and vn�m (see their definitions

in Kovriguine et al., 2001), v;n ¼ d2xn=dk2 is the curvature of the spectrum of mode n and

U ¼ B1B�
2B

�
3B

�
4expiðDxÞs þ B�

1B2B3B4expið�DxÞs ð2:23Þ

Fig. 4. Four-wave resonance in the thin infinitely long bar.

5576 D.A. Kovriguine et al. / International Journal of Solids and Structures 39 (2002) 5571–5583



is the so-called four-wave resonant interaction potential. Eqs. (2.22) and (2.23) possess a Hamiltonian

structure with first (energy) integral H ¼ HðA;Bn; n ¼ 1; 2; 3; 4Þ. This allows one, knowing analytical so-

lutions, to estimate the stability of these solutions.

Note that as s ! 1, we asymptotically obtain

Av ¼
X4

n¼1

k2
novjBnj2

v2
n � 1

: ð2:24Þ

This, by v integration, can be interpreted as the fact that low-frequency bending waves (such that vn < 1)

induce uniform stretching proportional to the wave intensity jBnj2. This is some kind of non-local effect akin
to a mean flow in hydrodynamics.

Typical temporal patterns (squared-amplitude variations versus slow time s) for the above-selected

quartet have been computed and are illustrated in Fig. 5. Further remarks about this case concern three

points:

i(i) The problem examined is quite similar to one met in other areas of non-linear science. In particular, a

similar analysis prevails in (a) the study of quasi-one-dimensional wave packets on the upper ocean, (b)

the study of interactions between capillarity and gravity waves in a fluid, (c) that of the interaction of
Langmuir and ion-acoustic waves in plasmas, (d) that of exciton–phonon interactions in molecules of

proteins, (e) in the study of the evolution of packets of surface waves, and (f) that of electron–phonon

interactions in crystals.

(ii) Like in the other physical problems mentioned at point (i) there also exist non-resonant interac-

tions, when some of the four waves have zero amplitude. In particular, the study of cross interac-

tions (or cross modulations) then yields a system of non-linearly coupled Schr€oodinger equations, and

the self-modulation of bending-wave trains and envelope solitons, yields a generalized Zakharov sys-

tem in the form introduced by Maugin et al. (1992) in the study of elastic surface waves on stratified
structures––see these in Kovriguine and Potapov (1998), and in the long report by Kovriguine et al.

(2001).

Fig. 5. Evolution of squared amplitudes for the quartet of Fig. 4.

D.A. Kovriguine et al. / International Journal of Solids and Structures 39 (2002) 5571–5583 5577



3. Waves traveling around a closed circular ring

This case is only briefly sketched out in order to emphasize the differences with the infinite bar of Section

2. In this new case which necessarily implies periodicity, the ring is viewed as a slice of an infinitely long thin
shell and it obviously presents a discrete spectrum circumferentially. Special attention is paid to the dy-

namical loss of stability against axisymmetric oscillations caused by a radially uniform impact. The non-

linearity yields non-trivial dynamical effects and we observe the existence, via modal exchanges of energy, of

resonant triads between high-frequency axisymmetric oscillations and bending travelling waves (of equal

wave numbers), leading eventually to the instability of low-frequency bending waves (at the second order of

approximation). The basic equations are those of thin walled shells in the geometrically non-linear theory.

Let u the azimuthal angle and R the radius of the ring of thickness h. If vðu; tÞ and wðu; tÞ are the non-

dimensional azimuthal displacement of the middle line and the non-dimensional transverse (radial) dis-
placement, it is convenient to introduce the following change of dependent variables:

V ¼ vu þ w; W ¼ wu � v: ð3:1Þ

Accordingly, the equations governing v and w are derived from a Lagrangian formulation with La-
grangian L such that

L ¼ K � P; ð3:2Þ
with kinetic and potential energies given (in dimensional units) by

K ¼ 1

2
qhðv2t þ w2

t Þ; P ¼ 1

2

Z þh=2

�h=2
Ee2uu df; ð3:3Þ

where E is Young�s modulus, and the azimuthal strain is given by (Ginsberg, 1974)

euu ¼ 1

R
ðvu þ wÞ � f

R2
ðwu � vÞu þ 1

2R2
ðwu � vÞ2; ð3:4Þ

where f 2 �ð1=2Þh;þð1=2Þhð Þ is the radial distance from the middle line in a cross-section of the ring. The

corresponding non-dimensional field equations, on account of (3.1) are deduced as

vtt � Vu þ e2Wuu ¼ l
1

2
ðW 2Þu

�
þ WV

�
þ l2

2
W 3;

wtt þ V þ e2Wuuu ¼ l ðVW Þu
�

� 1

2
W 2

�
þ l2

2
ðW 3Þu:

ð3:5Þ

Here again l 	 1, and the relative thickness of the ring is defined by e ¼ h=
ffiffiffiffiffi
12

p
R. The latter eventually

provides a second small parameter.

The circular shape of the ring imposes that solutions of (3.5) satisfy the periodicity conditions

vðu; tÞ ¼ vðu þ 2p; tÞ; wðu; tÞ ¼ wðu þ 2p; tÞ: ð3:6Þ
If s ¼ lt is the slow time, the linear-wave phases will be of the form

Uk;n ¼ xk;ns þ nu; ð3:7Þ

where n is an integer. To each one of the angular frequencies xk;n there will correspond a normal wave. We

can play with the existence of the second small parameter e. In particular we may consider the case of rings

with small curvature (large radius) for which e 	 1. Then the linear coupling between modes in Eq. (3.2)

with vanishing right-hand sides can be said to be weak. On discarding l-terms, Eq. (3.5) yield the following

separate dispersion relations whenever we implement the inextensibility condition of the middle line of the
ring (cf. Donnell, 1979): V ¼ 0, i.e., wu ¼ v (note this is not the same condition as e ¼ 0):
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x1;n ¼ �en
n2 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1

p ; x2;n ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1

p
ð3:8Þ

for bending and azimuthal waves, respectively. In these conditions it is shown that the amplitudes of the

azimuthal, Ak;n, and bending, Bk;n, components of the normal waves are linearly related by

Bk;n ¼ �ipk;nAk;n; ð3:9Þ

with coefficients pk;n, k ¼ 1; 2; given approximately by

p1;n � n�1; p2;n � �n: ð3:10Þ

The linear dynamical solution (3.8)–(3.10) is usually considered as quite satisfactory. In order to respect the

long-wave limit approximation, the values of n should be bounded from above by some maximal wave

number nmax, e.g., by a characteristic wavelength that should not exceed a certain number of ring thick-

nesses (e.g., kP 10h). If the simplifying hypotheses applied to obtain the approximations (3.8) do not
apply, then we cannot discard the terms in W in the left-hand sides of Eq. (3.5). The linear dispersion

relations then read

x2
k;n ¼ 1

2
ðn2 þ 1Þð1 þ e2n2Þ � 1

2
ðn2

�
þ 1Þ2ð1 þ e2n2Þ2 � 4n2e2ðn2 � 1Þ2

�1=2

: ð3:11Þ

The proportionality coefficients pk;n of the amplitudes in Eq. (3.9) are now given by the more complicated
frequency-dependent formula

pk;n ¼
nð1 þ e2n2Þ

ð1 þ e2Þn2 � x2
k;n

; ð3:12Þ

with the orthogonality condition p1;np2;n ¼ �1. The spectra for a chosen value of e are shown in Fig. 6.

Fig. 6. Spectrum and three-wave resonance for a closed circular ring.
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3.1. Three-wave non-linear coupling

System (3.5) is prone to exhibiting resonance couplings inside wave triads. Exact phase matching can be

realized as in Fig. 6––here between a high-frequency azimuthal wave and two low-frequency bending waves
traveling in the same direction. A particular case of this is given in Fig. 7 describing a so-called two-to-one

internal resonance between the axisymmetric oscillation and two bending waves. A third type of resonance

exists where resonance occurs between a high-frequency azimuthal wave and two low-frequency satellites,

one being a bending wave and the other an azimuthal one. This last type exists only in this ring case, so that

it disappears in the limit as the ring, cut properly, becomes a straight bar as its curvature goes to zero. The

algebra in the ring case is somewhat similar to that performed in Section 2 and will not be repeated. Phase

matching conditions read

x1 þ x2 ¼ x3 þ lDx; n1 � n2 ¼ n3; ð3:13Þ

where Dx is the detuning (equal to zero in exact matching conditions). Solutions of Eq. (3.5) are looked for

in the following asymptotic form

vðu; tÞ ¼ �i
X3

k¼1

pkAkðsÞexpiUk þ lvð1Þðu; tÞ þ 0ðl2tÞ þ ð��Þ�;

wðu; tÞ ¼
X3

k¼1

AkðsÞexpiUk þ lwð1Þðu; tÞ þ 0ðl2tÞ þ ð��Þ�;
ð3:14Þ

at order l with s the slow time scale. Substituting from these into (3.5) and equating the terms of order l,
after integration over the wave phases we find the differential equations that govern the non-resonant

corrections vð1Þ and wð1Þ as

dAk

ds
¼ �ix�1

k W�2
k a

oU
oA�

k

; ð3:15Þ

Fig. 7. Two-to-one internal resonance between axisymmetric oscillations and bending waves.
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where a ¼ W1W2V3 � W1V2W3 is the non-linearity coefficient (with Vk ¼ 1 � pknk, Wk ¼ nk � pk), Wk ¼
ð1 þ p2

kÞ
1=2

, and U is the average potential given by

U ¼ A1A2A�
3expiðDxÞs þ A�

1A
�
2A3expið�DxÞs: ð3:16Þ

Initial conditions associated to (3.15) read

Anð0Þ ¼ an0; n ¼ 1; 2; 3: ð3:17Þ
Just like in Section 2, Eq. (3.15) possess first integrals in the form of the energy conservation and the

Manley-Rowe relations (cf. Kovriguine et al., 2001, for details). The system being conservative (Hamil-

tonian), the following conclusions can be drawn in so far as stability properties––at this order of ap-
proximation––are concerned:

ii(i) azimuthal high-frequency waves are unstable with respect to small perturbations (so-called break-up

instability).

i(ii) bending low-frequency waves are stable with respect to small perturbations.

(iii) one can study the time evolution of the amplitude envelopes (Kovriguine et al., 2001)

(iv) The loss of stability against the high-frequency wave and the resonant excitation of two low-frequency

waves is accompanied by a stress amplification phenomenon.

Notice that one can play with the value of the parameter e––by adjusting it––so that matching conditions

can be exactly satisfied. This critical value of e is found by solving the general expression (3.12) for e when

we want (for instance) degenerate resonant conditions such as (this is realized in Fig. 7)

n ¼ n1 ¼ �n2; n3 ¼ 0; x1 ¼ x2 ¼ 1
2
x3: ð3:18Þ

3.2. Four-wave resonant coupling

Just like in Section 2 one can go further in the asymptotic analysis by including terms of order l2 in

the ansatz for the solutions (Fig. 8). Then a detuning of order l2 is considered with general matching

conditions

x1 � x2 � x3 � x4 ¼ l2Dx; n1 � n2 � n3 � n4 ¼ 0: ð3:19Þ

Fig. 8. Two cases of four-wave resonances in a closed circular ring.
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Two such situations are shown in Fig. 8. There exist other possibilities of such resonant quartets (see Fig.

13 in Kovriguine et al., 2001). The study of this resonance phenomenon requires a lengthy algebra. It

suffices to note that the considered system is still Hamiltonian and thus conserves energy and an energy

partition between modes is characterized by appropriate Manley-Rowe relations.

3.3. Non-resonant interactions

These take place when the resonant interactions between three and four waves are absent. Such inter-

actions are ubiquitous in weakly non-linear oscillatory systems. The matching conditions––for a wave
couple––then look like degenerate forms of four-wave matching conditions (compare to (3.19)), e.g.,

trivially

x1 � x1 þ x2 � x2 ¼ 0; n1 � n1 þ n2 � n2 ¼ 0: ð3:20Þ

We refer to the original work (Kovriguine et al., 2001) for more details. Special cases of these interac-
tions are provided by cross-interactions of wave couples and self-modulation of isolated waves. For the

last case, a caricature of the matching conditions is given by (3.20) in which all n and x will bear the same

index.

4. Conclusion

The one-dimensional structural examples briefly examined in this contribution have revealed the es-

sential properties of three-wave and four-wave resonance couplings. Although the emphasis has been

placed on mechanical consequences of these couplings, the analogy with non-linear optical systems (of
which the jargon is often used) is more than obvious. This may be even more true when dealing with two-

dimensional mechanical systems such as plates and shells, an example of which will be dealt with in Part 2

of this work to be published elsewhere (Kovriguine et al., 2002).
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